Государственное бюджетное общеобразовательное учреждение школа № 131 Красносельского района Санкт-Петербурга

АТКНИЧП

УТВЕРЖДЕНА

решением педагогического совета ГБОУ школа № 131 Красносельского района Санкт-Петербурга Протокол от 30,08 2023 г. № 1 приказом от SODS 2023 г. № 344-09
директора ГБОУ школа № 131
Красносельского района
Санкт-Петербурга
Л.Н. Ненашевой

РАБОЧАЯ ПРОГРАММА

по физике для 8-9 классов на 2023-2024 учебный год

Пояснительная записка

Рабочая программа составлена в соответствии со следующими нормативными документами:

- Федеральным Законом от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации»;
- Федеральным государственным образовательным стандартом основного общего образования, утвержденным приказом Министерства образования и науки Российской Федерации от 17.12.2010 №1897;
 - АООП ООО ГБОУ школа №131 на 2023-2024 учебный год;
 - Положением ГБОУ школа №131 «О рабочей программе».

Программа соответствует образовательному минимуму содержания основных образовательных программ и требованиям к уровню подготовки учащихся, позволяет работать без перегрузок в классе с детьми разного уровня обучения и интереса к физике. Она позволяет сформировать у учащихся основной школы достаточно широкое представление о физической картине мира.

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и дает распределение учебных часов по разделам курса 9 класса с учетом меж предметных связей, возрастных особенностей учащихся, определяет минимальный набор опытов, демонстрируемых учителем в классе и лабораторных, выполняемых учащимися.

Общая характеристика учебного предмета

Школьный курс физики — системообразующий для естественнонаучных учебных предметов, поскольку физические законы лежат в основе содержания курсов химии, биологии, географии и астрономии. Физика - наука, изучающая наиболее общие закономерности явлений природы, свойства и строение материи, законы ее движения. Основные понятия физики и ее законы используются во всех естественных науках.

Физика изучает количественные закономерности природных явлений и относится к точным наукам. Вместе с тем гуманитарный потенциал физики в формировании общей картины мира и влиянии на качество жизни человечества очень высок.

Физика - экспериментальная наука, изучающая природные явления опытным путем. Построением теоретических моделей физика дает объяснение наблюдаемых явлений, формулирует физические законы, предсказывает новые явления, создает основу для применения открытых законов природы в человеческой практике. Отвечает на вопрос: «Почему изучаемые явления протекают именно так, а не иначе». Аристотель ввел слово ФЮЗИС, но под природой он понимал не естественную среду, окружающую человека, а скрытую от его чувств сущность вещей и событий. Физические законы лежат в основе химических, биологических, астрономических явлений. В силу отмеченных особенностей физики ее можно считать основой всех естественных наук.

В современном мире роль физики непрерывно возрастает, так как физика является основой научно-технического прогресса. Использование знаний по физике необходимо каждому для решения практических задач в повседневной жизни. Устройство и принцип действия большинства применяемых в быту и технике приборов и механизмов вполне могут стать хорошей иллюстрацией к изучаемым вопросам.

Знание физических законов необходимо для изучения химии, биологии, физической географии, технологии, ОБЖ.

При составлении данной рабочей программы учтены рекомендации Министерства образования об усилении практический, экспериментальной направленности преподавания физики и включена внеурочная деятельность.

Физика в основной школе изучается на уровне рассмотрения явлений природы, знакомства с основными законами физики и применением этих законов в технике и повседневной жизни.

Цели изучения физики в основной школе следующие:

- развитие интересов и способностей учащихся на основе передачи им знаний и опыта познавательной и творческой деятельности;
- понимание учащимися смысла основных научных понятий и законов физики, взаимосвязи между ними;
 - формирование у учащихся представлений о физической картине мира. образовательные результаты

Достижение этих целей обеспечивается решением следующих задач:

- знакомство учащихся с методом научного познания и методами исследования объектов и явлений природы;
- приобретение учащимися знаний о физических величинах, характеризующих эти явления;
- формирование у учащихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов, широко применяемых в практической жизни;
- овладение учащимися такими общенаучными понятиями, как природное явление, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки;
- понимание учащимися отличий научных данных от непроверенной информации, ценности науки для удовлетворения бытовых, производственных и культурных потребностей человека.

Место предмета в учебном плане

Рабочая программа в соответствии с учебным планом ОУ №131 на 2023 – 2024 учебный год, рассчитана на 68 часов в 8 классе (2ч/нед.) и на 102 часа в 9 классе (3ч/нед.) исходя из 34 учебных недель в году.

В рабочую учебную программу включены элементы учебной информации по темам, перечень демонстраций и фронтальных лабораторных работ, необходимых для формирования умений, указанных в требованиях к уровню подготовки выпускников основной школы.

Для реализации программы выбран учебно-методический комплекс (далее УМК), который входит в федеральный перечень учебников, рекомендованных (допущенных) к использованию образовательном процессе в образовательных учреждениях, образовательные общего образования реализующих программы имеющих государственную аккредитацию и обеспечивающий обучение курсу физики, в соответствии с ФГОС.

При разработке программы учитывался контингент детей школы (дети с OB3, задержка психического развития).

Коррекционная направленность реализации программы обеспечивается через использование в образовательном процессе специальных методов и приёмов, создание специальных условий. При сохранении всего объёма практических, лабораторных работ и демонстраций сокращено количество часов, отведённых на решение расчётных задач, которые представляют особую трудность для детей с ОВЗ. Приоритет отдаётся качественным задачам и заданиям, связанным с практической деятельностью человека в

быту, на производстве, по охране окружающей среды и собственной безопасной жизнедеятельностью, что близко и понятно детям. Дети с ОВЗ нуждаются в постоянной коррекции долговременной памяти, поэтому учебный материал даётся в более сжатом виде, с многократным повторением основных понятий и определений, что позволяет сократить количество учебных часов по темам и увеличить количество часов на итоговое повторение в конце учебного года (резервное время). Преобладающими формами контроля являются тесты из сборника тестов, входящего в состав УМК «Физика» 9 класс.

Приемы, методы, технологии

В основе развития универсальных учебных действий в основной школе лежит системно-деятельностный подход. В соответствии с ним именно активность учащихся признается основой достижения развивающих целей образования — знания не передаются в готовом виде, а добываются самими учащимися в процессе познавательной деятельности.

В соответствии с данными особенностями предполагается использование следующих педагогических технологий: проблемного обучения, развивающего обучения, игровых технологий, а также использование методов проектов, индивидуальных и групповых форм работы. При организации учебного процесса используется следующая система уроков:

Комбинированный урок - предполагает выполнение работ и заданий разного вида.

Урок решения задач - вырабатываются у учащихся умения и навыки решения задач на уровне обязательной и возможной подготовки.

Урок — тест - тестирование проводится с целью диагностики пробелов знаний, тренировки технике тестирования.

Урок – самостоятельная работа - предлагаются разные виды самостоятельных работ.

Урок — контрольная работа - урок проверки, оценки и корректировки знаний. Проводится с целью контроля знаний учащихся по пройденной теме.

Урок – лабораторная работа - проводится с целью комплексного применения знаний.

При проведении уроков используются также интерактивные методы, а именно: работа в группах, учебный диалог, объяснение-провокация, лекция-дискуссия, учебная дискуссия, игровое моделирование, защита проекта, совместный проект, деловые игры; традиционные методы: лекция, рассказ, объяснение, беседа.

Контроль знаний, умений, навыков проводится в форме контрольных работ, выполнения тестов, физических диктантов, самостоятельных работ, лабораторных работ, опытов, экспериментальных задач.

Контрольно – измерительные материалы, направленные на изучение уровня:

- 1. знаний основ физики (монологический ответ, экспресс опрос, фронтальный опрос, тестовый опрос, написание и защита сообщения по заданной теме, объяснение эксперимента, физический диктант)
- 2. приобретенных навыков самостоятельной и практической деятельности учащихся (в ходе выполнения лабораторных работ и решения задач)
- 3. развитых свойств личности: творческих способностей, интереса к изучению физики, самостоятельности, коммуникативности, критичности, рефлексии.

Планируемые результаты

В программе по физике для 8, 9 классов основной школы, составленной на основе федерального государственного образовательного стандарта определены требования к результатам освоения образовательной программы основного общего образования.

Личностными результатами обучения физике в основной школе являются:

- 1. сформированность познавательных интересов, интеллектуальных и творческих способностей учащихся;
- 2. убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
- 3. самостоятельность в приобретении новых знаний и практических умений;
- 4. готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
- 5. мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;
- 6. формирование ценностного отношения друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметными результатами обучения физике в основной школе являются:

- 1. овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
- 2. понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
- 3. формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
- 4. приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;
- 5. развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- 6. освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
- 7. формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Общими предметными результатами обучения физике в основной школе являются:

- 1. знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;
- 2. умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;
- 3. умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний;
- 4. умения и навыки применять полученные знания для объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды;
- 5. формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, в высокой ценности науки в развитии материальной и духовной культуры людей;
- 6. развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы;
- 7. коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации

Частными предметными результатами обучения физике в 8 классе, на которых основываются общие результаты, являются:

- понимание и способность объяснять физические явления: конвекция, излучение, теплопроводность, изменение внутренней энергии тела в результате теплопередачи или работы внешних сил, испарение (конденсация) и плавление (отвердевание) вещества, охлаждение жидкости при испарении, кипение, выпадение росы;
- умение измерять: температуру, количество теплоты, удельную теплоемкость вещества, удельную теплоту плавления вещества, влажность воздуха;
- владение экспериментальными методами исследования: зависимости относительной влажности воздуха от давления водяного пара, содержащегося в воздухе при данной температуре; давления насыщенного водяного пара; определения удельной теплоемкости вещества;
- понимание принципов действия конденсационного и волосного гигрометров, психрометра, двигателя внутреннего сгорания, паровой турбины и способов обеспечения безопасности при их использовании;
- понимание смысла закона сохранения и превращения энергии в механических и тепловых процессах и умение применять его на практике;
- овладение способами выполнения расчетов для нахождения: удельной теплоемкости, количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении, удельной теплоты сгорания топлива, удельной теплоты плавления, влажности воздуха, удельной теплоты парообразования и конденсации, КПД теплового двигателя;

- умение использовать полученные знания в повседневной жизни (экология, быт, охрана окружающей среды);
- понимание и способность объяснять физические явления: электризация тел, нагревание проводников электрическим током, электрический ток в металлах, электрические явления с позиции строения атома, действия электрического тока;
- умение измерять: силу электрического тока, электрическое напряжение, электрический заряд, электрическое сопротивление;
- владение экспериментальными методами исследования зависимости: силы тока на участке цепи от электрического напряжения, электрического сопротивления проводника от его длины, площади поперечного сечения и материала;
- понимание смысла основных физических законов и умение применять их на практике: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля Ленца;
- понимание принципа действия электроскопа, электрометра, гальванического элемента, аккумулятора, фонарика, реостата, конденсатора, лампы накаливания и способов обеспечения безопасности при их использовании;
- владение способами выполнения расчетов для нахождения: силы тока, напряжения, сопротивления при параллельном и последовательном соединении проводников, удельного сопротивления проводника, работы и мощности электрического тока, количества теплоты, выделяемого проводником с током, емкости конденсатора, работы электрического поля конденсатора, энергии конденсатора;
- умение использовать полученные знания в повседневной жизни (экология, быт, охрана окружающей среды, техника безопасности);
- понимание и способность объяснять физические явления: намагниченность железа и стали, взаимодействие магнитов, взаимодействие проводника с током и магнитной стрелки, действие магнитного поля на проводник с током;
- владение экспериментальными методами исследования зависимости магнитного действия катушки от силы тока в цепи;
- умение использовать полученные знания в повседневной жизни (экология, быт, охрана окружающей среды, техника безопасности);
- понимание и способность объяснять физические явления: прямолинейное распространение света, образование тени и полутени, отражение и преломление света;
- умение измерять фокусное расстояние собирающей линзы, оптическую силу линзы;
- владение экспериментальными методами исследования зависимости: изображения от расположения лампы на различных расстояниях от линзы, угла отражения от угла падения света на зеркало;
- понимание смысла основных физических законов и умение применять их на практике: закон отражения света, закон преломления света, закон прямолинейного распространения света;
- различать фокус линзы, мнимый фокус и фокусное расстояние линзы, оптическую силу линзы и оптическую ось линзы, собирающую и рассеивающую линзы, изображения, даваемые собирающей и рассеивающей линзой;
- умение использовать полученные знания в повседневной жизни (экология, быт, охрана окружающей среды).

Частными предметными результатами обучения физике в 9 классе, на которых основываются общие результаты, являются умения:

• соблюдать правила безопасности и охраны труда при работе с учебным и лабораторным оборудованием;

- характеризовать понятия (система отсчета, относительность механического движения, невесомость и перегрузки, механические волны, звук, инфразвук и ультразвук, электромагнитные волны, инфракрасные волны, ультрафиолетовые волны, рентгеновское излучение, шкала электромагнитных волн, спектры испускания и поглощения; альфа-, бета- и гамма-излучения, изотопы, ядерная и термоядерная энергетика);
- различать явления (равномерное и неравномерное прямолинейное движение, равноускоренное прямолинейное движение, свободное падение тел, равномерное движение по окружности, взаимодействие тел, равновесие материальной точки, реактивное движение, невесомость, колебательное движение (гармонические колебания, затухающие колебания, вынужденные колебания), резонанс, волновое движение (звук), отражение звука, дисперсия света, отражение и преломление света, полное внутреннее отражение света, сложение спектральных цветов, естественная радиоактивность, возникновение линейчатого спектра излучения по описанию их характерных свойств и на основе опытов, демонстрирующих данное физическое явление;
- описывать изученные свойства тел и физические явления, используя физические величины (средняя и мгновенная скорость тела при неравномерном движении, ускорение, перемещение при равноускоренном прямолинейном движении, центростремительное ускорение, угловая скорость, перемещение, пройденный путь и скорость при криволинейном движении, сила тяжести, ускорения свободного падения с учетом зависимости от широты местности, вес тела, центр тяжести твердого тела, импульс тела, импульс силы, механическая работа и мощность, потенциальная энергия, кинетическая энергия, полная механическая энергия, период и частота колебаний, период математического и пружинного маятников, длина волны, громкость и высота тона, скорость света, показатель преломления среды); при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы физических величин, находить формулы, связывающие данную физическую величину с другими величинами;
- характеризовать свойства тел, физические явления и процессы, используя закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, принцип относительности Галилея, законы Ньютона, закон сохранения импульса, законы отражения и преломления света, законы сохранения зарядового и массового чисел при ядерных реакциях; при этом различать словесную формулировку закона и его математическое выражение;
- объяснять физические процессы и свойства тел: выявлять причинно-следственные связи, строить объяснение из 2–3 логических шагов с опорой на 2–3 изученных свойства физических явлений, физических закона или закономерности;
- решать расчетные задачи (опирающиеся на систему из 2–3 уравнений), используя законы и формулы, связывающие физические величины: на основе анализа условия задачи записывать краткое условие, выбирать законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реалистичность полученного значения физической величины;
- проводить опыты по наблюдению физических явлений или физических свойств тел (изучение второго закона Ньютона, закона сохранения энергии; зависимость периода колебаний пружинного маятника от массы груза и жесткости пружины, а так же независимость от амплитуды малых колебаний): самостоятельно собирать установку из избыточного набора оборудования; описывать ход опыта и формулировать выводы;
- проводить при необходимости серию прямых измерений, определяя среднее значение измеряемой величины; обосновывать выбор способа

- измерения/измерительного прибора;
- проводить исследование зависимостей физических величин с использованием прямых измерений (зависимость пути от времени при равноускоренном движении без начальной скорости; периода колебаний математического маятника от длины нити): самостоятельно собирать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;
- проводить косвенные измерения физических величин (средняя скорость и ускорение тела при равноускоренном движении, ускорение свободного падения, частота и период колебаний математического и пружинного маятников, радиоактивный фон): планировать измерения; собирать экспериментальную установку, следуя предложенной инструкции; вычислять значение величины и анализировать полученные результаты с учетом заданной погрешности измерений;
- соблюдать правила безопасного труда при работе с лабораторным оборудованием;
- различать основные признаки изученных физических моделей: материальная точка, абсолютно твердое тело, планетарная модель атома, нуклонная модель атомного ядра;
- характеризовать принципы действия изученных приборов и технических устройств с опорой на их описания (в том числе: эхолот, перископ, спектроскоп, дозиметр, камера Вильсона), используя знания о свойствах физических явлений и необходимые физические закономерности; использовать схемы и схематичные рисунки изученных технических устройств, измерительных приборов и технологических процессов при решении учебно-практических задач; приводить примеры практического использования физических знаний в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- приводить примеры вклада российских (в том числе: К.Э. Циолковский, С.П. Королев, Д.Д. Иваненко,, И.В. Курчатов) и зарубежных (в том числе: И. Ньютон, Дж. Максвелл, Г. Герц, В. Рентген, А. Беккерель, М. Склодовская-Кюри, Э. Резерфорд) ученых-физиков в развитие науки, объяснение процессов окружающего мира, в развитие техники и технологий;

Учебно-тематический план 8 класса

Тема	Часы
1. Тепловые явления	10
2. Агрегатные состояния вещества	10
3. Электрические явления	24
4. Электромагнитные явления	8
5. Световые явления	12
6. Итоговое повторение	4
Итого:	68

Содержание курса физики в 8 классе

1. Тепловые явления (10 ч)

Тепловое движение. Тепловое равновесие. Температура. Внутренняя энергия. Работа и теплопередача. Теплопроводность. Конвекция. Излучение. Количество теплоты. Удельная теплоёмкость. Расчёт количества теплоты при теплообмене. Закон сохранения и превращения энергии в механических и тепловых процессах.

Лабораторные работы:

Лабораторная работа №1 «Сравнение количеств теплоты при смешивании воды разной температуры».

Лабораторная работа №2 «Измерение удельной теплоёмкости твёрдого тела».

Контрольные работы:

Контрольная работа №1 «Тепловые явления».

2. Агрегатные состояния вещества (10 ч)

Плавление и отвердевание кристаллических тел. Удельная теплота плавления. Испарение и конденсация. Кипение. Влажность воздуха. Удельная теплота пароообразования Объяснение изменения агрегатного состояния вещества на основе молекулярнокинетических представлений. Преобразование энергии в тепловых машинах. Двигатель внутреннего сгорания. Паровая турбина. КПД теплового двигателя. Экологические проблемы использования тепловых машин.

Лабораторные работы:

Лабораторная работа №3 «Измерение влажности воздуха».

Контрольные работы:

Контрольная работа №2 «Агрегатные состояния вещества».

3. Электрические явления (24 ч)

Электризация тел. Два рода электрических зарядов. Взаимодействие заряженных тел. Проводники, диэлектрики и полупроводники. Электрическое поле. Закон сохранения электрического заряда. Делимость электрического заряда. Электрон. Строение атома. Электрический ток. Источники тока. Электрическая цепь. Сила тока. Электрическое напряжение. Электрическое сопротивление. Закон Ома для участка цепи. Последовательное и параллельное соединение проводников. Работа и мощность электрического тока. Закон Джоуля- Ленца. Правила безопасности при работе с электро приборами.

Лабораторные работы:

Лабораторная работа №4 «Сборка электрической цепи и измерение силы тока в её различных участках».

Лабораторная работа №5 «Измерение напряжения на различных участках электрической цепи».

Лабораторная работа №6 «Регулирование силы тока реостатом».

Лабораторная работа №7 «Измерение сопротивления проводника при помощи амперметра и вольтметра».

Лабораторная работа №8 «Измерение мощности и работы тока в электрической лампе».

Контрольные работы:

Контрольная работа №3 по темам «Электрический ток. Напряжение», «Сопротивление». Контрольная работа №4 по темам «Работа и мощность электрического тока», «Закон Джоуля—Ленца», «Конденсатор».

4. Электромагнитные явления (8 ч)

Опыт Эрстеда. Магнитное поле. Магнитное поле прямого тока. Магнитное поле катушки с током. Постоянные магниты. Магнитное поле Земли. Взаимодействие магнитов. Действие магнитного поля на проводник с током. Электрический двигатель.

Лабораторные работы:

Лабораторная работа №9 «Сборка электромагнита и испытание его действия».

Лабораторная работа №10 «Изучение электрического двигателя постоянного тока (на модели)».

Контрольные работы:

Контрольная работа №5 по теме «Электромагнитные явления».

5. Световые явления (12 ч)

Источники света. Прямолинейное распространение света. Видимое движение светил. Отражение света. Закон отражения света. Плоское зеркало. Преломление света. Закон преломления света. Линзы. Фокусное расстояние линзы. Оптическая сила линзы. Изображения, даваемые линзой. Оптические приборы.

Лабораторные работы:

Лабораторная работа №11 «Получение изображения при помощи линзы».

Контрольные работы:

Контрольная работа №6 по теме «Световые явления».

6. Итоговое повторение (4 ч)

Учебно-тематический план 9 класса

Тема	Часы
7. Законы взаимодействия и движения тел	38
8. Механические колебания и волны, звук	12
9. Электромагнитное поле	22
10. Строение атома и атомного ядра. Использование энергии атомных	15
ядер	
11. Строение и эволюция Вселенной	5
12. Повторение	7
13. Резерв	3
Итого:	102

Содержание курса физики в 9 классе

Законы взаимодействия и движения тел (38 часов)

Материальная точка. Система отсчета. Перемещение. Определение координаты движущегося тела. Перемещение при прямолинейном равномерном движении. Решение задач. Прямолинейное равноускоренное движение. Ускорение. Скорость прямолинейного равноускоренного движения. График скорости. Решение задач на скорость и ускорение. Перемещение при прямолинейном равноускоренном движении. Перемещение тела при прямолинейном равноускоренном движении без начальной скорости. Относительность движения. Решение задач на перемещение. Инерциальные системы отсчета. Первый закон Ньютона. Второй закон Ньютона. Третий закон Ньютона. Свободное падение тел. Движение тела, брошенного вертикально вверх. Закон всемирного тяготения. Ускорение

свободного падения на Земле и других небесных телах. Движение тела по окружности. Искусственные спутники Земли. Импульс тела. Закон сохранения импульса. Реактивное движение. Ракеты. Вывод закона сохранения полной механической энергии.

Лабораторные работы:

Лабораторная работа № 1. «Исследование равноускоренного движения без начальной скорости».

Лабораторная работа № 2. «Измерение ускорения свободного падения».

Контрольные работы:

Контрольная работа № 1. «Основы кинематики»

Контрольная работа № 2. «Основы динамики».

Механические колебания и волны, звук (12 часов)

Колебательное движение. Свободные колебания. Величины, характеризующие колебательное движение. Превращение энергии при колебательном движении. Гармонические колебания. Затухающие колебания. Вынужденные колебания. Резонанс. Распространение колебаний в среде. Волны. Продольные и поперечные волны. Длина волны. Скорость распространения волны. Источники звука. Звуковые колебания. Высота, тембр и громкость звука. Распространение звука. Отражение звука. Эхо. Звуковой резонанс.

Лабораторные работы:

Лабораторная работа № 3 «Исследование зависимости периода и частоты свободных колебаний нитяного маятника от его длины».

Контрольные работы:

Контрольная работа № 3 «Механические колебания и волны, звук».

Электромагнитное поле (22 часа)

Магнитное поле и его графическое изображение. Направление тока и направление линий его магнитного поля. Правило буравчика. Правило правой руки. Обнаружение магнитного поля по его действию на электрический ток. Сила Ампера. Правило левой руки. Индукция магнитного поля. Магнитный поток. Явление электромагнитной индукции. Направление индукционного тока. Правило Ленца. Получение и передача переменного электрического тока. Трансформатор. Электромагнитное поле. Электромагнитные волны. Электромагнитная природа света. Преломление света. Физический смысл показателя преломления. Дисперсия света. Цвета тел. Типы оптических спектров. Поглощение и испускание света атомами. Происхождение линейчатых спектров.

Лабораторные работы:

Лабораторная работа №4 «Изучение явления электромагнитной индукции»

Контрольные работы:

Контрольная работа № 4 «Электромагнитное поле».

Строение атома и атомного ядра. Использование энергии атомных ядер (15 часов)

Радиоактивность. Опыт Резерфорда. Модели атомов Томсона и Резерфорда. Радиоактивные превращения атомных ядер. Экспериментальные методы исследования частиц. Открытие протона и нейтрона. Состав атомного ядра. Ядерные силы. Энергия связи ядра. Дефект масс. Деление ядер урана. Цепная реакция. Ядерный реактор. Преобразование внутренней энергии атомных ядер в электрическую энергию. Атомная энергетика. Биологическое действие радиации. Закон радиоактивного распада. Термоядерная реакция.

Лабораторные работы:

Лабораторная работа № 5 «Изучение треков заряженных частиц по готовым фотографиям».

Контрольные работы:

Контрольная работа № 5 «Строение атома и атомного ядра».

Строение и эволюция Вселенной (5 часа)

Состав, строение и происхождение Солнечной системы. Большие планеты Солнечной системы. Малые тела Солнечной системы. Строение, излучения и эволюция Солнца и звезд. Строение и эволюция вселенной.

Повторение (7 час)

Повторение механических, электромагнитных, оптических, квантовых явлений. Повторение материалов 7 и 8 классов.

Резерв (3 часа)